

# **Relation**

## Exercise

- A and B are two sets having 3 and 5 elements 1. respectively and having 2 elements in common. Then the number of elements in  $A \times B$  is
  - (a) 6 (b) 36
  - (c) 15 (d) None of these
- 2. If  $A = \{2, 4\}$  and  $B = \{3, 4, 5\}$ , then  $(A \cap B) \times (A \cup B)$ is
  - (a)  $\{(2, 2), (3, 4), (4, 2), (5, 4)\}$
  - (b)  $\{(2, 3), (4, 3), (4, 5)\}$
  - (c)  $\{(2, 4), (3, 4), (4, 4), (4, 5)\}$
  - (d)  $\{(4, 2), (4, 3), (4, 4), (4, 5)\}$
- 3. If A and B are two sets such that  $n(A \cap \overline{B}) = 9$ ,  $n(\overline{A} \cap B) = 10$  and  $n(A \cap B) = 24$ , then  $n(A \times B)$  is equal to
  - (a) 105 (b) 210
  - (c) 70 (d) None of these
- 4. If  $A = \{1, 2, 4\}$ ,  $B = \{2, 4, 5\}$ ,  $C = \{2, 5\}$ , then (A B) $\times$  (B – C) is
  - (a)  $\{(1, 2), (1, 5), (2, 5)\}$  (b)  $\{(1, 4)\}$
  - (c)  $\{(1,3)\}$ (d) None of these
- 5. Let A and B are two sets given in such a way that  $A \times B$  contains 6 elements. If 3 elements of  $A \times B$  be (1, 3), (2, 5) and (3, 3), then its remaining elements are (a) (1, 1), (2, 3), (3, 5)
  - (b) (1, 2), (2, 3), (3, 5)
  - (c) (1, 5), (2, 2), (3, 5)
  - (d) (1, 5), (2, 3), (3, 5)
- 6. A relation  $\phi$  from C to R is defined by  $x \phi y \Leftrightarrow |x| = y$ . Which one of the following is correct?
  - (a)  $(2+3i) \neq 13$ (b)  $3\phi(-3)$
  - (d) *i* \ 1 (c)  $(1+i) \phi 2$
- 7. If A and B have *n* elements in common, then the number of elements common to  $(A \times B)$  and  $(B \times A)$  is
  - (a) *n* (b) *n*! (d)  $n^2$
  - (c) n/2

- 8. If R is a relation from a finite set A having *m* elements to a finite set B having *n* elements, then the number of relations from A to B is
  - (a) 2<sup>*mn*</sup> (b)  $2^{mn} - 1$
  - (d) *m<sup>n</sup>* (c) 2*mn*
- Let R be a relation on a set A such that  $R = R^{-1}$ , then R 9. is
  - (a) reflexive (b) symmetric
  - (c) transitive (d) None of these
- 10. The void relation on a set A is
  - (a) reflexive
    - (b) symmetric and transitive
  - (c) transitive
  - (d) reflexive and transitive
- 11. If R is a relation on a finite set having *n* elements, then the number of relations on A is
  - (b)  $2^{n^2}$ (a)  $2^n$
  - (c)  $n^2$ (d)  $n^n$
- 12. A relation R is defined on the set Z of integers as follows :  ${}_{m}R_{n} \Leftrightarrow m + n$  is odd. Then R is
  - (a) reflexive (b) symmetric
  - (c) transitive (d) all of these
- 13. Which of the following statements is not correct for the relation R defined by  ${}_{a}R_{b}$  if and only if b lives within one kilometre from a?
  - (a) R is reflexive
  - (b) R is symmetric
  - (c) R is anti-symmetric
  - (d) None of the above
- 14. If  $A = \{1, 2, 3\}$ , then a relation
  - $R = \{(2, 3), (2, 1), (3, 1)\}$  on A is
  - (a) symmetric and transitive
  - (b) symmetric only
  - (c) transitive only
  - (d) None of the above

#### Relation

- 15. If  $A = \{1, 2, 3\}$ ,  $B = \{1, 4, 6, 9\}$  and R is a relation from A to B defined by 'x is greater than y'. Then the range of R is
  - (a)  $\{1, 4, 6, 9\}$  (b)  $\{4, 6, 9\}$
  - (c) {1} (d) None of these
- 16. Given the relation  $R = \{(1, 2), (2, 3)\}$  is defined on the set  $A = \{1, 2, 3\}$  then minimum number of ordered pairs which when added to R make it an equivalence relation is (a) 5 (b) 6
  - $\begin{array}{c} (a) & 5 \\ (c) & 7 \\ (d) & 8 \\ \end{array}$
- 17. Let R be an equivalence relation on a finite set A having *n* elements. Then the number of ordered pairs in R is
  - (a) less than n
  - (b) greater than or equal to n
  - (c) less than or equal to n
  - (d) None of the above

- 18. Let S be the set of all real numbers. A relation R has been defined on S by  ${}_{a}R_{b}$ :  $|a b| \le 1$ . Then R is
  - (a) reflexive and symmetric but not transitive
  - (b) reflexive and transitive but not symmetric
  - (c) symmetric and transitive but not reflexive
  - (d) an equivalence relation
- 19. Let S be the set of all real numbers. Then, the relation  $R = \{(a, b) : 1 + ab > 0\}$  on S is
  - (a) reflexive and symmetric but not transitive
  - (b) reflexive and transitive but not symmetric
  - (c) symmetric and transitive but not reflexive
  - (d) symmetric, transitive and reflexive
- 20. The relation "less than" in the set of natural numbers is
  - (a) only symmetric(c) only reflexive
- (b) only transitive(d) None of these

|     | ANSWERS |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 1.  | (c)     | 2.  | (d) | 3.  | (b) | 4.  | (b) | 5.  | (d) | 6.  | (d) | 7.  | (d) | 8.  | (a) | 9.  | (b) | 10. | (b) |
| 11. | (b)     | 12. | (b) | 13. | (c) | 14. | (c) | 15. | (c) | 16. | (c) | 17. | (b) | 18. | (a) | 19. | (a) | 20. | (b) |

### Explanations



- 1. (c) n(A) = 3 and n(B) = 5  $\Rightarrow n(A \times B) = 3 \times 5 = 15$ 2. (d)  $A = \{2, 4\}$  and  $B = \{3, 4, 5\}$   $\Rightarrow A \cap B = \{4\}$  and  $A \cap B = \{2, 3, 4, 5\}$   $\Rightarrow (A \cap B) \times (A \cap B) = \{(4, 2), (4, 3), (4, 4), (4, 5)\}$ 3. (b)  $n(A \cap \overline{B}) = 9, n(\overline{A} \cap B) = 10$  and  $n(A \cap B) = 24$
- $n(A \cap B) = n(A \cap \overline{B}) + n(\overline{A} \cap B) + n(A \cap B)$   $\Rightarrow n(A \cap B) = 5$ so n(A) = 14 and n(B) = 15and  $n(A \times B) = 14 \times 15 = 210$ 4. (b)  $A = \{1, 2, 4\}, B = \{2, 4, 5\}, C = \{2, 5\}$
- 4. (b)  $A = \{1, 2, 4\}, B = \{2, 4, 5\}, C = \{2, 5\}$   $A - B = \{1\}$  and  $B - C = \{4\}$ then  $(A - B) \times (B - C) = \{(1, 4)\}$ 5. (d)  $A = \{1, 2, 3\}, B = \{3, 5\}$ 
  - A × B = {(1, 3), (1, 5), (2, 3), (2, 5), (3, 3), (3, 5)} So, remaining elements of A × B are (1, 5), (2, 3), (3, 5).

- 6. (d)  $\phi: C \rightarrow R$  such that  $x \phi y \Leftrightarrow |x| = y$ (i)  $|2 + 3i| = \sqrt{4+9} = \sqrt{13} \neq 13$ (ii)  $3 \neq -3$ (iii)  $|1 + i| = \sqrt{1+1} = \sqrt{2} \neq 2$ (iv)  $|i| = \sqrt{(1)} = 1$ So,  $i \phi 1$  is correct.
- 7. (d) Let  $A = \{1, 2, 3\}$  and  $B = \{2, 3, 4\}$ i.e.,  $n(A \cap B) = 2$ then  $A \times B = \{(1, 2) (1, 3) (1, 4) (2, 2) (2, 3) (2, 4)$   $(3, 2) (3, 3) (3, 4)\}$ and  $B \times A = \{(2, 1) (2, 2) (2, 3) (3, 1) (3, 2)$   $(3, 3) (4, 1) (4, 2) (4, 3)\}$   $(A \times B) \cap (B \times A) = \{(2, 2) (2, 3) (3, 3) (3, 2)\}$ i.e.,  $n(A \times B) \cap (B \times A)\} = 4$ So, if  $n(A \cap B) = n$ then  $n\{(A \times B) \cap (B \times A)\} = n^2$ 8. (a)  $|A| \to m, |B| \to n$
- $\Rightarrow |A \times B| = mn$ and  $R \subseteq (A \times B)$ So, number of relations from A to  $B = 2^{mn}$ 9. (b) Let  $(a, b) \in \mathbb{R}$ .
  - Then  $(a, b) \in \mathbb{R} \Rightarrow (b, a) \in \mathbb{R}^{-1}$ But given  $\mathbb{R} = \mathbb{R}^{-1} \Rightarrow (b, a) \in \mathbb{R}$ Hence,  $\mathbb{R}$  is symmetric.

- (b) Void relation, i.e., null relation is symmetric and transitive but not reflexive because there is a relation of equality in each element.
- 11. (b)  $|A| \rightarrow n$   $\Rightarrow |A \times A| = n \times n = n^2$ and  $R \subseteq A \times A$

So, number of relations on  $A = 2^{n^2}$ 

- 12. (b) ∵ Sum of two odd and even numbers is an even numbers. So, R is not reflexive. If m + n is odd then n + m is also odd. ⇒ mRn and nRm
  ∴ R is symmetric.
  12. (c) R ⇒ h lives within one kilometer from a
- 13. (c)  ${}_{a}R_{b} \Rightarrow b$  lives within one kilometre from *a*. R is reflexive and symmetric but not anti-symmetric.
- 14. (c)  $A = \{1, 2, 3\}$  and  $R = \{(2, 3), (2, 1), (3, 1)\}$ (2, 3)  $\in R$  and (3, 1)  $\in R \Rightarrow (2, 1) \in R$  $\Rightarrow R$  is transitive only.
- 15. (c) Range (R) =  $\{y : (x, y) \in R\}$ A =  $\{1, 2, 3\}$  and B =  $\{1, 4, 6, 9\}$ So, Range =  $\{1\}$  $\therefore 2 > 1$  and 3 > 1 only
- 16. (c) R is reflexive if it contains (1, 1), (2, 2) and (3, 3)
  ∴ (1, 2) ∈ R, (2, 3) ∈ R
  ∴ R is symmetric, if (2, 1), (3, 2) ∈ R
  Now, R = {(1, 1) (2, 2) (3, 3) (2, 1) (3, 2) (2, 3) (1, 2)}
  R will be transitive if (3, 1) (1, 3) ∈ R.
  Thus, R becomes an equivalence relation by adding (1, 1), (2, 2), (3, 3), (2, 1) (3, 2), (1, 3), (3, 1)
  So, the total number of ordered pairs to be added = 7

17. (b) ∵ R is an equivalence relation on a set A, therefore (a, a) ∈ R ∀ a ∈ A. Hence, R has atleast n ordered pairs.
18. (a)

(i) ∵ |a - a| ≤ 1, so aRa
∴ R is reflexive.

(ii) aRb ⇒ |a - b| ≤ 1 ⇒ |b - a| ≤ 1 ⇒ bRa
∴ R is symmetric.
(iii) 2R1 and 1R1/2 But 2 is not related to 1/2.
∴ R is not transitive.

Thus, R is reflexive and symmetric but not transitive.

(i) 
$${}_{a}R_{a} :: 1 + a^{2} > 0$$
  
 $\Rightarrow$  R is reflexive.

(ii)  $_{a}R_{b} \Rightarrow 1 + ab > 0 \Rightarrow 1 + ba > 0 \Rightarrow _{b}R_{a}$  $\Rightarrow R$  is symmetric.

(iii) If 
$$a = -\frac{1}{2}$$
,  $b = \frac{1}{2}$  and  $c = 4$ , then  
 ${}_{a}R_{b}$  and  ${}_{b}R_{c}$  but *a* is not related to *c*.

So, R is not transitive. Thus, R is reflexive and symmetric but not transitive.

20. (b)  ${}_{a}\mathbf{R}_{b}: a < b \forall a, b \in \mathbf{N}$   $\therefore a \leq a$   $\Rightarrow$  Relation is not reflexive.  $\therefore a < b \not \Rightarrow b < a$   $\Rightarrow$  Relation is not symmetric.  $\therefore a < b \text{ and } b < c \Rightarrow a < c$  $\Rightarrow$  Relation is transitive only.

#### 8